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Introduction  

In (Del Rio Amador & Lovejoy, 2019, 2020), the stochastic natural variability 

component of globally averaged and regional temperature was represented as a 

fractional Gaussian noise (fGn) process. In order to determine Granger causality, we need 

to construct a space-time multivariate fGn process that reproduces the cross-

correlations. This appendix describes the main technical details. 

The main properties of fGn relevant for the present paper are summarized in the 

following Text S1-S3. We derive expressions for the cross-correlation function for two 

fGn processes in Text S4. The empirical cross-correlation matrices for the natural 

temperature variability and for the corresponding innovations for all the 10512 
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datapoints are described in Text S5, showing that the innovations have negligible cross-

correlations for nonzero lags. In Text S6 we analyze the influence of co-predictors in the 

forecasts under this condition. 

Basic Theory for fGn Processes.  

Text S1. Continuous-in-time fGn 

An fGn process at resolution 𝜏 (the scale at which the series is averaged) has the 

following integral representation:  
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where 𝛾(𝑡) is a unit Gaussian 𝛿-correlated white noise process with 〈𝛾(𝑡)〉 = 0 and 

〈𝛾(𝑡)𝛾(𝑡′)〉 = 𝛿(𝑡 − 𝑡′) [𝛿 is the Dirac function], Γ is the Euler gamma function, 𝜎𝑇 is the 

ensemble standard deviation (for 𝜏 = 1) and 

 
( ) ( )

2

2cos 2 2
Hc

H H




=

 − −
. (S2) 

This is the canonical value for the constant 𝑐𝐻 that was chosen to make the 

expression for the statistics particularly simple. In particular, the variance is 〈𝑇𝜏(𝑡)2〉 =

𝜎𝑇
2𝜏2𝐻 for all 𝑡, where 〈∙〉 denotes ensemble averaging. The parameter 𝐻, with −1 < 𝐻 <

0, is the fluctuation exponent of the corresponding fractional Gaussian noise process, the 

Hurst exponent, 𝐻′ = 𝐻 + 1. Fluctuation exponents are used due to their wider 

generality; they are well defined even for strongly intermittent non-Gaussian multifractal 

processes. 

Equation (S1) can be interpreted as the smoothing by the fractional integral of a 

white noise process or as the power-law weighted average of past innovations, 𝛾(𝑡). This 

power-law weighting accounts for the memory effects in the temperature series. The 

closer the fluctuation exponent is to zero, the larger is the influence of past values on the 

current temperature. This is evidenced by the behaviour of the autocorrelation function: 
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, (S3) 

for |∆𝑡| ≥ 𝜏. In particular, for ∆𝑡 ≫ 𝜏 we obtain: 

 ( ) ( )( )
2

1 2 1

H

H

t
R t H H



 
  + +  

 
, (S4) 

which has the power-law behaviour mentioned earlier with the same exponent as the 

average squared fluctuation and due to the Wiener–Khinchin theorem, it implies a 

spectrum 𝐸(𝜔)~𝜔−𝛽 with exponent 𝛽 = 1 + 2𝐻. For more details on fGn processes see 

(Biagini et al., 2008; Gripenberg & Norros, 1996; Mandelbrot & Van Ness, 1968).  
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Text S2. Discrete-in-time fGn 

A detailed explanation of the theory for modeling and predicting using the 

discrete version of fGn processes was presented in (Del Rio Amador & Lovejoy, 2019); 

the main results are summarized next. The analogue of Eq. (S1) in the discrete case for a 

finite series, {𝑇𝑡}𝑡=1,…,𝑁, with length 𝑁 and zero mean is: 

 1 1 1

1

...
t

t tj t j t t tt

j

T m m m  + −

=

= = + + , (S5) 

for 𝑡 = 1, … , 𝑁, where {𝛾𝑡}𝑡=1,…,𝑁 is a discrete white noise process and the coefficients 𝑚𝑖𝑗 

are the elements of the lower triangular matrix 𝐌𝐻,𝜎𝑇

𝑁  given by the Cholesky 

decomposition of the autocovariance matrix, 𝐂𝐻,𝜎𝑇

𝑁 = 𝜎𝑇
2[𝑅𝐻(𝑖 − 𝑗)]𝑖,𝑗=1,…,𝑁: 

 ( ), , ,T T T

T
N N N

H H H  =C M M , (S6) 

with 𝑚𝑖𝑗 = 0 for 𝑗 > 𝑖 (we assume 𝜏 = 1 is the smallest scale in our system). The 

superscript 𝑇 denotes transpose operation. In vector form, Eq. (S5) can be written as: 

 , T

N

N H N=T M γ . (S7) 

Equations (S5-S7) can be used to create synthetic samples of fGn with a given 

length 𝑁, autocorrelation function given by Eq. (S3) and set of parameters 𝜎𝑇 > 0 and 

−1 < 𝐻 < 0 (the mean of the series is always assumed equal to zero). Conversely, given 

an actual temperature series with vector 𝐓𝑁 = [𝑇1, … , 𝑇𝑁]𝑇 , we can estimate the 

parameters 𝜎𝑇 and 𝐻 using the maximum likelihood method [details are given in 

Appendix A of (Del Rio Amador & Lovejoy, 2019)] and we can verify that it could be well 

approximated by an fGn model by inverting Eq. (S7) and obtaining the residual vector of 

innovations: 

 ( )
1

, T

N

N H N

−

=γ M T . (S8) 

If the model provides a good description of the data, the residual vector 𝛄𝑁 =

[𝛾1, … , 𝛾𝑁]𝑇 is a white noise, i.e. the elements should be NID(0,1) with autocorrelation 

function 〈𝛾𝑖𝛾𝑗〉 = 𝛿𝑖𝑗 (𝛿𝑖𝑗 is the Kronecker delta and NID(0,1) stands for Normally and 

Independently Distributed with mean 0 and variance 1). It is worth mentioning that a 

white noise process is a particular case of fGn with 𝐻 = − 1 2⁄ . 

Text S3. Prediction 

If {𝑇𝑡}𝑡<0 is an fGn process, the optimal k-step predictor for 𝑇𝑘 (𝑘 > 0), based on a 

finite number, 𝑚 (memory), of past values, is given by: 

 ( ) ( ) ( )
0

0 0
ˆ ...k j j m m

j m

T k T k T k T  − −

=−

= = + + , (S9) 

where the vector, 𝛟(𝑘) = [𝜙−𝑚(𝑘), … , 𝜙0(𝑘)]𝑇 , satisfies the Yule-Walker equations: 

 ( ) ( )H Hk k=R r , (S10) 
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with the vector 𝐫𝐻(𝑘) = [𝑅𝐻(𝑘 − 𝑖) ]𝑖=−𝑚,…,0
𝑇 = [𝑅𝐻(𝑚 + 𝑘), … , 𝑅𝐻(𝑘) ]𝑇 and 𝐑𝐻 =

[𝑅𝐻(𝑖 − 𝑗)]𝑖,𝑗=−𝑡,… ,0 being the autocorrelation matrix (see Eq. (S3)) (Hirchoren & Arantes, 

1998). 

The root mean square error (RMSE) for the predictor at a future time 𝑘, using a 

memory of 𝑚 values, is defined as: 

 ( ) ( )
2

ˆRMSE , k kk m T T m = −
 

. (S11) 

The following analytical expression can be obtained: 

 ( ) ( ) ( ) ( )
1

RMSE , , , 1
T

T T H H Hk m H k k 
−

= − r R r . (S12) 

For a given forecast horizon, 𝑘, the RMSE only depends on the parameters 𝜎𝑇 and 

𝐻, and the memory used, 𝑚. 

The theoretical mean square skill score (MSSS), is defined as: 

 ( )
( ) ( )

( )

2

2

ˆ

MSSS 1

T k T k

k
T k

 −
 

= − . (S13) 

 (the reference forecast is the mean of the series, assumed equal to zero here). 

From the definition of the RMSE, Eq. (S11), we obtain the theoretical value: 

 ( )
( )

2

2

RMSE , , ,
MSSS , , =1

T

T

k m H
k m H




− , (S14) 

or, replacing Eq. (S12): 

 ( ) ( ) ( ) ( ) ( ) ( )
1

MSSS , ,
T

H H H Hk m H k k k k
−

= = r R r r . (S15) 

For 𝐻 = − 1 2⁄ , the fGn process is a white noise process and MSSS = 0. The skill 

increases with 𝐻 and the process becomes perfectly predictable when 𝐻 → 0. 

Text S4. Cross-correlation function 

Let 𝑇𝑖(𝑡) and 𝑇𝑗(𝑡) be two fGn processes with zero mean and respective 

parameters 𝜎𝑇𝑖 , 𝐻𝑖 and 𝜎𝑇𝑗 , 𝐻𝑗 , which could represent, for example, the natural 

temperature variability at locations “𝑖” and “𝑗”, respectively. The cross-covariance 

function: 

 ( ) ( ) ( )1 2 1 2,ij i jC t t T t T t= , (S16) 

can be found using the integral representation (Eq. (S1)) for each process:
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where we have changed variables in each of the respective second integrals in Eq. (S1). 

Let us assume that the white-noise innovations satisfy: 

 ( ) ( ) ( )i j i jt t a t t     = − , (S18) 

where −1 < 𝑎𝑖𝑗 < 1. If we assume that 𝑇𝑖(𝑡) and 𝑇𝑗(𝑡) are jointly wide-sense stationary, 

then, without loss of generality, we can replace 𝑡1 = 0, 𝑡2 = ∆𝑡 ≥ 𝜏, in Eq. (S17) to obtain: 

 
( )

( ) ( )

( ) ( )
2 2 2

cos 2

            1 1 2

i j

i j i j

i j i j i j

j i jH H

ij H H T T ij

H H H H H H

H H H
C c c a


   



  

+

+ + + + + +

 − − −
=

 + + − −
 

, (S19) 

where 𝐻𝑖 + 𝐻𝑗 ≠ −1, 𝜆 = ∆𝑡 𝜏⁄  and 𝑐𝐻𝑖
 and 𝑐𝐻𝑗

 are given by Eq. (S2). 

For the cross-correlation function: 
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where we replaced Eq. (S16), 〈𝑇𝑖(𝑡)2〉 = 𝜎𝑇𝑖
2𝜏2𝐻𝑖 and 〈𝑇𝑗(𝑡 + ∆𝑡)2〉 = 𝜎𝑇𝑗

2𝜏2𝐻𝑗 , we obtain: 
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. (S21) 

The integral in Eq. (S17) can also be evaluated for 𝑡1 = 𝑡2 = ∆𝑡 = 0. The final 

result for all cases is: 
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where 𝜆 = (𝑡2 − 𝑡1) 𝜏⁄  is the lag of process “i” with respect to “j” in units of 𝜏 and 
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This expression is equivalent to the one obtained by (Coeurjolly et al., 2010), 

except that they use a different normalization. For 𝜆 ≫ 1, we obtain the asymptotic 

approximation: 

 ( ) ,, , , i j
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H H

ij ij i j H H ijR a H H a  
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 . (S24) 

where 
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. (S25) 

Note that the function 𝐹𝑖𝑗(𝜆, 𝐻𝑖 , 𝐻𝑗) satisfies 𝐹𝑖𝑗(𝜆) = 𝐹𝑗𝑖(−𝜆). The other factors in 

Eq. (S22) are symmetric with respect to a permutation of the indexes or to the sign of the 

lag. Hence, the cross-correlation function satisfies the symmetry property for jointly wide 

sense stationary-processes: 𝑅𝑖𝑗(𝜆) = 𝑅𝑗𝑖(−𝜆). If 𝑎𝑖𝑗 = 1 and 𝐻𝑖 = 𝐻𝑗 , we recover the 

autocorrelation function Eq. (S3). 

Figure S1. Cross-correlation function for 𝑎𝑖𝑗 = 0.7 and fluctuations exponents 𝐻𝑖 =

−0.35 and 𝐻𝑗 = −0.15. The blue line is the graph of the theoretical expression Eq. (S22) 

and the red dots were obtained from a set of 500 pairs of fGn series each 𝑁 = 1000 

timesteps long. 

Figure S1 shows an example of the cross-correlation function for 𝑎𝑖𝑗 = 0.7 and 

fluctuations exponents 𝐻𝑖 = −0.35 and 𝐻𝑗 = −0.15. The blue line is the graph of the 

theoretical expression Eq. (S22) and the red dots were obtained from a set of 500 pairs of 

fGn series each 𝑁 = 1000 timesteps long. The simulations were produced using Eqs. (S5-

S7) where the white noise series of innovations, {𝛾𝑖} and {𝛾𝑗}, were generated from a 

multivariate Gaussian distribution in such a way that: 〈𝛾𝑖(𝑡′)𝛾𝑖(𝑡′′)〉 = 〈𝛾𝑗(𝑡′)𝛾𝑗(𝑡′′)〉 =

𝛿𝑡′𝑡′′ and 〈𝛾𝑖(𝑡′)𝛾𝑗(𝑡′′)〉 = 〈𝛾𝑗(𝑡′)𝛾𝑖(𝑡′′)〉 = 𝑎𝑖𝑗𝛿𝑡′𝑡′′  (Notice that we replaced the Dirac by 

the Kronecker 𝛿 for discrete-in-time series). The estimated cross-correlation function for 

the simulations (red dots) was computed as: 
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Text S5. Empirical cross-correlation matrices 

For the dataset described in Sect. 2.1, we estimated the natural temperature 

variability, 𝑇𝑖(𝑡), and, using the theory presented in Text S2, we obtained the series of 

innovations for each location, 𝛾𝑖(𝑡). Using Eq. (S26), we estimated the lagged cross-

correlation matrices (shown in Fig. S2) for the innovations and for the natural 

temperature variability: [𝜌𝑖𝑗(𝜆)] and [𝑅𝑖𝑗(𝜆)], respectively (𝜆 = Δ𝑡 𝜏⁄  is the lag in units of 

𝜏 = 1 month). In panel (a) we show the full cross-correlation matrix for lag 𝜆 = 0 

including the 10512 grid points (73 latitudes × 144 longitudes) for the innovations (left) 

and for the temperature (right). The pixels were indexed as: 1→{90°S, 0°E}, 2→{90°S, 

2.5°E}, …, 10511→{90°N, 5°W}, 10512→{90°N, 2.5°W}. These 10512×10512-pixel images 

are too big to appreciate the detailed structure of the teleconnections. The large 

autocorrelation values are visible only along the main diagonal, as well as in the top-left 

and bottom-right corners corresponding to the poles where the grid points are very 

close to each other and where they share the same temperature values. Large 

correlations are also observed in the tropical region for the temperature anomalies. 

To discern the details of the cross-correlations, we blew-up the regions shown as 

black squares in panel (a). In panel (b), we show the lagged cross-correlation matrices for 

the innovations for 𝜆 = 0, 1, 2 and 3 months (left to right), only for these 576 grid points 

between latitudes 42.5°N and 52.5°N. In panel (c), we show similar cross-correlation 

matrices as in (b), but now for the natural temperature variability. In the figure captions 

in panels (b) and (c), we show the values of the average cross-correlation ± one standard 

deviation and the maximum absolute value for each matrix (i.e. out of more than 3 ∙ 105 

values). 

For 𝜆 = 0, the elements 𝜌𝑖𝑗(0) = 𝑎𝑖𝑗 shown in Fig. S2(b), are relatively large. The 

maximum values are evidently 1 along the main diagonal, but very large values are also 

obtained along the diagonals separated by 144 pixels because they represent places only 

2.5° away in latitude. For the temperature (panel (c)), the correlations decrease with the 

lag, but some of the structure is preserved and relatively large values are obtained even 

for 𝜆 = 3 months, mainly along the diagonals. The temperature cross-correlation, 𝑅𝑖𝑗(𝜆) 

is proportional to 𝑎𝑖𝑗 , but it also depends on the fluctuation exponents 𝐻𝑖 and 𝐻𝑗 for 

every 𝜆, following Eqs. (7) and (8). For the cross-correlation of the innovations (panel (b)), 

the values decrease much faster. Even for 𝜆 = 1, we can see that almost all the 

correlation is lost (see the distribution values in the figure captions). This indicates that 

the innovation series closely satisfy the time-independence condition given by Eq. (S18)

(actually, its discrete version where we replace the Dirac by the Kronecker delta). The 

same analysis exemplified here for the small sample square region of 576×576 pixels, 
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was performed in the full 10512×10512 correlation matrices obtaining similar 

distributions for each respective lag. 

Figure S2. Lagged cross-correlation matrices for the innovations and for the natural 

temperature variability: [𝜌𝑖𝑗(𝜆)] and [𝑅𝑖𝑗(𝜆)], respectively. (a) Full cross-correlation 

matrices for lag 𝜆 = 0 including the 10512 grid points for the innovations (left) and for 

the temperature (right). (b) Lagged cross-correlation matrices for the innovations for 𝜆 = 

0, 1, 2 and 3 (left to right), only for the 576 grid points between latitudes 42.5°N and 

52.5°N. They correspond to the small square region shown in the respective matrix in 

panel (a). (c) Same as in (b), but now for the natural temperature variability. In the figure 

captions in panels (a) and (b), we show the values of the average cross-correlation ± one 

standard deviation and the maximum absolute value for each matrix. 
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Text S6. Co-predictors 

In Text S3 we mentioned that, given 𝑚 datapoints, the k-step predictor for the 

temperature at location “i”, with 𝑇𝑖(𝑡) an fGn process with parameters 𝜎𝑖 and 𝐻𝑖 , is in 

vector form: 

 ( ) ( )0 0

 
ˆ
i i iT k k= T , (S27) 

where 𝐓𝑖 = [𝑇𝑖(−𝑚), … , 𝑇𝑖(0)]𝑇 and the vector of coefficients 𝛟𝑖
0(𝑘) =

[𝜙−𝑚
𝑖0 (𝑘), … , 𝜙0

𝑖0(𝑘)]
𝑇
, satisfies the Yule-Walker equations (Eq. (S10)). The superscript “0” 

indicates that only the location “i” is considered. 

Let us assume that we have another time series at location “j”, 𝑇𝑗(𝑡) (fGn process 

with parameters 𝜎𝑗 and 𝐻𝑗) and we want to add this information to improve the predictor 

for the temperature at location “i”. The optimal k-step predictor is now given by the sum 

of 2𝑚 + 2 terms (𝑚 + 1 in the scalar product for each location): 

 ( ) ( ) ( )  j
ˆ Ti
i i i j

Tj

T k k k



=  + T T  , (S28) 

where the vectors of coefficients, 𝛟𝒊(𝑘) and 𝛟𝒋(𝑘) satisfy the Yule-Walker equations: 

 
( )

( )

( )

( )

i iiii ij

ji jj j ij

k k

k k

    
=       

    

 

 

rR R

R R r




. (S29) 

The matrices 𝐑𝑖𝑖 = [𝑅𝑖𝑖(1, 𝑡1 − 𝑡2)]𝑡1,𝑡2=−𝑚,… ,0 and 𝐑𝑗𝑗 = [𝑅𝑗𝑗(1, 𝑡1 −

𝑡2)]
𝑡1,𝑡2=−𝑚,… ,0

 are the autocorrelation matrices for processes “i” and “j”, respectively, 

𝐑𝑖𝑗 = 𝐑𝑗𝑖
𝑇 = [𝑅𝑖𝑗(𝑎𝑖𝑗 , 𝑡1 − 𝑡2)]

𝑡1,𝑡2=−𝑚,… ,0
 are the cross-correlation matrices and the 

vectors 𝐫𝑖𝑖(𝑘) = [𝑅𝑖𝑖(1, 𝑘 − 𝑠) ]𝑠=−𝑚,…,0
𝑇  and 𝐫𝑖𝑗(𝑘) = [𝑅𝑖𝑗(𝑎𝑖𝑗 , 𝑘 − s) ]

𝑠=−𝑚,…,0

𝑇
,  (the 

elements are obtained from Eq. (S22)).  

For the case where we only have one time series at location “i”, Eq. (S15) gives: 

 ( ) ( ) ( ) ( ) ( ) ( )
10 0

 MSSS , ,
T

i i ii ii ii i iik m H k k k k
−

= = r R r r . (S30) 

The MSSS for the forecast at location “i”, considering now the information from 

the two locations “i” and “j” is: 

 ( ) ( ) ( ) ( ) ( )  MSSS , , , ,i ij i j i ii j ijk m a H H k k k k=  + r r  . (S31) 

The skill score for horizon 𝑘 is a function of the memory, 𝑚, the intrinsic spatial 

correlation of the innovations, 𝑎𝑖𝑗 , (independent of the scaling) and the fluctuation 

exponents, 𝐻𝑖 and 𝐻𝑗 . 

The main question is how much the new location helps to improve the accuracy 

of the forecast at position “i”. This can be quantified by the difference ∆MSSS𝑖 = MSSS𝑖 −

MSSS𝑖
0: 
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 ( ) ( ) ( ) ( ) ( ) ( )0

   MSSS , , , ,i ij i j i i ii j ijk m a H H k k k k k  = −  +   r r    (S32) 

which can also be written as: 

 ( ) ( ) ( ) ( )0

  MSSS , , , , T

i ij i j j ij ij ik m a H H k k k  =  − r R  . (S33) 

This is the normalized projection of the predictor from the new location, 

 ( ) ( ) 
ˆ
j j jT k k= T , (S34) 

in the direction of the error from the first predictor only: 

 ( ) ( ) ( ) ( )0ˆ ˆMSSSi j i ik T k T k T k  = −
  . (S35) 

This is in agreement with the orthogonality principle that states that the error of 

the predictor at location “i” is orthogonal to the data used to build that predictor. 

Location “j” can only contribute with new information that gives some component along 

this orthogonal direction. 

For continuous-in-time infinitely long series (infinite memory), the predictor 𝑇̂𝑗(𝑘) 

for 𝑘 > 0 is a linear combination of past innovations, {𝛾𝑗(𝑡)}
𝑡<0

, while the error, 𝑇𝑖(𝑘) −

𝑇̂𝑖
0(𝑘), is a linear combination of future innovations {𝛾𝑖(𝑡)}𝑡>0 (see the development in 

Sect. 2.5 of (Lovejoy et al., 2015)). That means that, if the condition Eq. (S18) is satisfied 

(future and past innovations are independent), then ∆MSSS𝑖 = 0 in Eq. (S35) and the new 

location does not help to improve the forecast. That does not mean that the two 

series at location “i”  and “j” are independent; they are still correlated with the correlation 

function given by Eq. (S22). It is just that this correlation is already included in the 

information obtained from the past at location “i”, which is enough for obtaining the 

optimal prediction for that location. 

For discrete-in-time finite series, there is some improvement in the prediction 

from using a co-predictor, but this improvement decreases with the memory, 𝑚, and is 

very small if enough past data points are used to build the predictor. In Fig. S3 we show 

contour plots of the relative difference ∆MSSS𝑖 MSSS𝑖
0⁄  (in %) as a function of 𝐻𝑖 and 𝐻𝑗 

for 𝑘 = 1, 𝑚 = 50 and values of 𝑎𝑖𝑗 = 0.6, 0.7 0.8 and 0.9. Notice that for a wide range of 

values, when 𝐻𝑖 and 𝐻𝑗 are relatively close (dark blue region in the plots), the second 

location brings almost no new information to the forecasts. The relative gain increases 

with 𝑎𝑖𝑗 , but even for 𝑎𝑖𝑗 = 0.6 (which is a fairly high correlation already) it remains lower 

than 1% for all values of 𝐻𝑖 and 𝐻𝑗 (see top-left panel of Fig. S3). That is why we did not 

include plots for 𝑎𝑖𝑗 < 0.6. In fact, even for highly correlated locations at the level of 

innovations with 𝑎𝑖𝑗 = 0.9 (bottom-right panel), the maximum relative improvement is 

lower than 4%. This maximum improvement is obtained when 𝐻𝑖 ≈ −0.5, for which the 

original MSSS𝑖
0 is very low, so the difference is actually at the noise level and is not 

statistically significant. This means that, in practice, for any set of fluctuation exponents 

𝐻𝑖 and 𝐻𝑗 and values of 𝑎𝑖𝑗 as large as 0.9, we only gain less than 2% of the original MSSS 

by using a co-predictor. 
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Figure S3. Contour plots of the relative improvement ∆MSSS𝑖 MSSS𝑖
0⁄  (in %) as a 

function of 𝐻𝑖 and 𝐻𝑗 for one step (𝑘 = 1), with 50 past values (𝑚 = 50) and correlations 

𝑎𝑖𝑗 = 0.6, 0.7 0.8 and 0.9. 

If MSSS𝑖
0 is the score obtained by predicting the temperature series at location i 

independently and MSSS𝑖 is the score considering also the information from another 

location j, then the improvement ∆MSSS𝑖 = MSSS𝑖 − MSSS𝑖
0 is, by definition, a measure of 

the Granger causality between series i and j. It can be proven that ∆MSSS𝑖 is the 

projection of the predictor at time 𝑡 from the new location, 𝑇̂𝑗(𝑡), in the direction of the 

error from the first predictor only: 

 ( ) ( ) ( ) ( )0ˆ ˆMSSSi j i it T t T t T t  = −
  . (S36) 

The orthogonality condition Eq. 12 implies that, for infinite series, if the new 

predictor is a linear combination of past data, then ∆MSSS𝑖 = 0. If only a few memory 
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steps are used, then larger improvements are obtained by borrowing memory from co-

predictors. Figure S4 shows the relative improvement ∆MSSS𝑖 MSSS𝑖
0⁄  (in %) as a function 

of 𝐻𝑖 and 𝐻𝑗 for 𝑘 = 1, 𝑎𝑖𝑗 = 0.8 and values of 𝑚 = 20, 5, 3 and 1. As the number of 

autoregressive steps used (memory) decreases, the larger the relative improvement 

becomes from using a co-predictor. In all cases, the long-memory predictor skill from a 

single location, MSSS𝑖
∞(with 𝑚 = 50), is larger than the combined short memory one for 

𝑚 = 5, 3, 2 and 1 (see Fig. S5). 

 

Figure S4. Contour plots of the relative improvement ∆MSSS𝑖 MSSS𝑖
0⁄  (in %) as a function 

of 𝐻𝑖 and 𝐻𝑗 for one step (𝑘 = 1), with 𝑎𝑖𝑗 = 0.8 and 𝑚 = 20, 5, 3 and 1. 
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Figure S5. Contour plots of the relative difference (MSSS𝑖
∞ − MSSS𝑖) MSSS𝑖

∞⁄  as a 

function of 𝐻𝑖 and 𝐻𝑗 for one step (𝑘 = 1), with 𝑎𝑖𝑗 = 0.8. We used 𝑚 = 50 for the single 

location long-memory MSSS𝑖
∞ and 𝑚 = 5, 3, 2 and 1 for the combined skill MSSS𝑖 . 

Following Eq. (S33), we computed a map of the maximum relative improvement 

∆MSSS𝑖 MSSS𝑖
0⁄  (Fig. S6) based on the empirical parameters. We see that the contribution 

from any other location is very small, reaching a maximum of 2% only in a few places, 

which is in the noise level of the skill estimates. This empirically confirms the lack of 

Granger causality between the series. As we show in Fig. S3, the maximum improvement 

at location 𝑖 comes from a place 𝑗 with large correlation, 𝑎𝑖𝑗 , and fluctuation exponent 𝐻𝑗 

very different than 𝐻𝑖 . This gives the largest component of the co-predictor orthogonal 

to the 𝑚-dimensional space defined by the 𝑚 past values of temperature at location 𝑖 

used to build the predictor. To produce the forecasts used in Fig. S6, we used 𝑚 = 20. 

The relative contribution from co-predictors can be decreased by just increasing the 
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number 𝑚 of past temperature values used to build the original predictor, in the limit 

𝑚 → ∞, the relative improvement vanishes. 

Figure S6. Maximum relative improvement, ∆MSSS𝑖 MSSS𝑖
0⁄ , that could be obtained from 

using any other location as co-predictor, using 𝑚 = 20 past values for the forecasts. 

Text S7. Simulations 

For most of the globe, the natural temperature variability has a transition from 

the weather (characterized by fluctuations increasing with the time scale) to the 

macroweather (with decreasing fluctuations) at a transition time 𝜏𝑤 lower than one 

month. This means that, for monthly averaged temperature, only the macroweather 

regime is present with the corresponding 𝐻 < 0 (see Fig. 1(a)) and the temperature can 

be modeled and simulated using the theory presented in sections S1 and S2. 

As presented in (Del Rio Amador & Lovejoy, 2020), for the places shown in red 

and yellow in Fig. 1(b) (generally over the tropical ocean), the weather-macroweather 

transition occurs at 𝜏𝑤 generally between 1 and 2 years, corresponding to the longer 

predictability limit of the ocean. For monthly averages, there is a biscaling behaviour: for 

time scales lower than 𝜏𝑤, 𝐻 > 0, the temperature can be modelled as a fractional 

Brownian motion (fBm) process (first differences are fGn) and for time scales larger than 

𝜏𝑤, 𝐻 < 0, the anomalies behave as fGn. Lovejoy (2019, 2020; Lovejoy et al., 2020) shows 

how this biscaling process – called fractional relaxation noise (fRn) – emerges naturally as 

the solution to a fractional energy balance equation (FEBE), and 𝜏𝑤 can be identified as a 

characteristic relaxation time. 

In this paper, we follow a more pragmatic approach to reproduce the two scaling 

regimes by still using the theory for fGn processes. This is achieved by expressing the 

natural temperature variability as a smoothed fGn process with a window 𝜏𝑤: 
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 ( ) ( )
w

w

t

t

T t T t dt 

−

 =  , (S37) 

where 𝑇𝜏(𝑡) is the resolution 𝜏 fGn defined by Eq. (S1), which is the 𝜏 increments of the 

corresponding fBm process, 𝐵𝐻′(𝑡), with Hurst exponent 𝐻′ = 𝐻fBm > 0 (the fluctuation 

exponent for the fGn is 𝐻fGn = 𝐻′ − 1 < 0 as 0 < 𝐻′ < 1): 

 ( ) ( ) ( )
1

H HT t B t B t 


 =  − −   . (S38) 

For 𝜏 ≪ 𝜏𝑤 (or exactly in the discrete case where we make 𝜏 = 1 and we replace 

the integral by the corresponding sum in Eq. (S37)), it can be shown that 𝑇𝜏𝑤
(𝑡) is the 𝜏𝑤 

increment of the same fBm process: 

 ( ) ( ) ( )
w H H wT t B t B t  = − − . (S39) 

Therefore, it is stationary with variance 〈𝑇𝜏𝑤
(𝑡)2〉 = 𝜎𝑇

2𝜏𝑤
2𝐻 and correlation function: 

 ( )
2 2 2

,

1
1 1 2

2w

H H H

H

w w w

t t t
R t

  

   
  = + + − −
 
 

, (S40) 

with 𝐻 being the fluctuation exponent for the high frequencies (i.e. 0 < 𝐻 < 1). The only 

difference with Eq. (S3) is that now we do not have the restriction |∆𝑡| ≥ 𝜏𝑤, thus the new 

process has two scaling regimes. For ∆𝑡 ≪ 𝜏𝑤 it can be approximated by: 

 ( )
2

, 1
w

H

H

w

t
R t



 
  −  

 
, (S41) 

while for ∆𝑡 ≫ 𝜏𝑤 it follows a power-law equivalent to Eq. (S4): 

 ( ) ( )
2 2

, 2 1
w

H

H

w

t
R t H H



−

 
  −  

 
. (S42) 

Similar asymptotic behaviours are obtained for the high and the low frequency 

approximations of the fRn process, solution of the FEBE. Also, notice how the cross-

correlations (Eqs. (7) and (8)) satisfy similar equations if we take 2𝐻 = 𝐻𝑖 + 𝐻𝑗 . 

Figure S7 shows the dependence of the autocorrelation function with the lag 𝜆 = ∆𝑡 𝜏𝑤⁄  

(Eq. (S40)) for different values of 𝐻. The high and the low frequency approximations for 

𝐻 = 0.25, given by Eqs. (S41) and (S42), were included as dashed and dotted lines, 

respectively. 
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Figure S7. Autocorrelation function vs. 𝜆 = ∆𝑡 𝜏𝑤⁄  (Eq. (S40)) for different values of 𝐻. 

The high and the low frequency approximations for 𝐻 = 0.25, given by Eqs. (S41) and 

(S42), were included as dashed and dotted lines, respectively. 

To estimate the transition time, 𝜏𝑤, in the places where 𝜏𝑤 > 1 month (𝐻 > 0 in 

Fig. 1(a)), we can fit the theoretical autocorrelation function (ACF) (Eq. (S40)) to the 

empirical one obtained from the data. Figure S8 shows examples of the ACF for both 

cases: pure fGn with 𝐻 < 0 and biscaling process with transition at 𝜏𝑤 from the weather, 

𝐻 > 0 (fBm-like) to the macroweather, 𝐻 < 0 (fGn-like). The ACF’s for the reference 

dataset (marked as “+”), for one set of simulations (marked as “o”) and calculated using 

Eqs. (S3) or (S40) with the corresponding values of 𝐻 and 𝜏𝑤 (solid curve) are shown in 

Fig. S8 for: (a) grid point in the North Atlantic at (55°N, 22.5°W), with estimated 𝐻 =

−0.2; (b) same as in (a) but with logarithmic scales in both axes to highlight the scaling; 

(c) grid point in the Tropical Pacific at (5°S, 177.5°W), with estimated high frequency 𝐻 =

0.38 and 𝜏𝑤 = 16 months and (d) the monthly mean temperature for the Niño 3.4 region 

(5°N-5°S, 170°W-120°W), with average fluctuation exponent 〈𝐻〉 = 0.54 and 〈𝜏𝑤〉 = 10 

months. There is good agreement between the empirical, the simulated and the 

theoretical ACF’s in all cases. 

The empirical reproduction of the ACF validates the realism of the stochastic 

model on a pixel-by-pixel basis, but we must also reproduce the coupling between 

different pixels, i.e.: the cross-correlation structure. This is verified by comparing the 

empirical orthogonal functions (EOF’s) obtained from the decomposition of the cross-

correlation matrix. In Fig. S9 we show the first five EOF’s for the reference dataset (left) 

and for a single realization simulations (right). To avoid strong multiplicative seasonality 

effects in the higher latitudes, we only considered the anomalies between 60°S and 60°N. 

In Fig. S10 we show the EOF’s using only sea surface temperatures (SST’s). The stochastic 

simulations reproduce very well the main modes of variability of the reference dataset. In 

the main test, we show how the cross-correlation structure for non-zero lags is also well 

reproduced by comparing the empirical and simulated ratio of global influence (RGI) – 

equivalent to the area weighted connectivity (AWC) for zero lags. 
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Figure S8. Autocorrelation functions (ACF’s) for the reference dataset (marked as “+”), 

for one set of simulations (marked as “o”) and obtained theoretically using Eqs. (S3) or 

(S40) (solid curve) for the temperature series at different positions: (a) grid point in the 

North Atlantic at (55°N, 22.5°W), with estimated 𝐻 = −0.2; (b) same as in (a) but with 

logarithmic scale in both axes to highlight the scaling; (c) grid point in the Tropical 

Pacific at (5°S, 177.5°W), with 𝐻 = 0.38 and 𝜏𝑤 = 16 months and (d) the monthly mean 

temperature for the Niño 3.4 region (5°N-5°S, 170°W-120°W), with average 〈𝐻〉 = 0.54 

and 〈𝜏𝑤〉 = 10 months. 
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Figure S9. First five EOF’s for the reference dataset (left) and for one simulation (right). 

We only considered the anomalies between 60°S and 60°N to avoid strong multiplicative 

seasonality effects in the higher latitudes. 
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Figure S10. First five EOF’s for the reference dataset (left) and for one simulation (right) 

only considering sea surface temperature anomalies (SST) between 60°S and 60°N. 
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Figure S11. Sequence showing the evolution of one El Niño event (see the central and 

east-central equatorial Pacific) since January 1997 to September 1998 for the reference 

dataset (a) and from August 1996 to May 1998 for the simulations (b). 

 

 

Additional Supporting Information (Files uploaded separately) 

 

The evolution of the detrended temperature anomalies obtained from NCEP/NCAR 

Reanalysis 1 and one simulation for the period January 1948 – December 2019 is shown 

in Movie S1. It is important to realize that the simulation (right) is not supposed to be the 

same as the reality (left), it is only supposed to have the same type of variability (the date 

above the simulation is totally fictional). Among other realistic features, the simulation 

reproduces huge regional patterns including El Niño and La Niña events that are 

emergent properties of the model. One example of the evolution of the El Niño event is 
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shown in Fig. S11 with a sequence since January 1997 to September 1998 for the 

reference dataset (a) and from August 1996 to May 1998 for the simulations (b). 

 

Movie S1. Evolution of the detrended temperature anomalies obtained from 

NCEP/NCAR Reanalysis 1 and one simulation for the period January 1948 – December 

2019. It is important to realize that the simulation (right) is not supposed to be the same 

as the reality (left), it is only supposed to have the same type of variability (the date 

above the simulation is totally fictional). Among other realistic features, the simulation 

reproduces huge regional patterns including El Niño and La Niña events that are 

emergent properties of the model. 

 


